|
|
|
|
公众号矩阵

一文带你深入了解JVM性能调优

Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。

作者:java互联网架构来源:今日头条|2021-01-27 11:10

一、JVM调优的一些概念

数据类型

Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。

基本类型包括:byte,short,int,long,char,float,double,Boolean,returnAddress

引用类型包括:类类型,接口类型和数组。

堆与栈

堆和栈是程序运行的关键,很有必要把他们的关系说清楚。

一文带你深入了解JVM性能调优以及对JVM调优的全面总结

Java对象的大小

基本数据的类型的大小是固定的,这里就不多说了。对于非基本类型的Java对象,其大小就值得商榷。

在Java中,一个空Object对象的大小是8byte,这个大小只是保存堆中一个没有任何属性的对象的大小。看下面语句:

  1. Object ob = new Object(); 

这样在程序中完成了一个Java对象的生命,但是它所占的空间为:4byte+8byte。4byte是上面部分所说的Java栈中保存引用的所需要的空间。而那8byte则是Java堆中对象的信息。因为所有的Java非基本类型的对象都需要默认继承Object对象,因此不论什么样的Java对象,其大小都必须是大于8byte。

有了Object对象的大小,我们就可以计算其他对象的大小了。

  1. Class NewObject {  
  2. int count;  
  3. boolean flag;  
  4. Object ob;  
  5. }  

其大小为:空对象大小(8byte)+int大小(4byte)+Boolean大小(1byte)+空Object引用的大小 (4byte)=17byte。但是因为Java在对对象内存分配时都是以8的整数倍来分,因此大于17byte的最接近8的整数倍的是24,因此此对象的大小为24byte。

这里需要注意一下基本类型的包装类型的大小。因为这种包装类型已经成为对象了,因此需要把他们作为对象来看待。包装类型的大小至少是12byte(声明一个空Object至少需要的空间),而且12byte没有包含任何有效信息,同时,因为Java对象大小是8的整数倍,因此一个基本类型包装类的大小至少是16byte。这个内存占用是很恐怖的,它是使用基本类型的N倍(N>2),有些类型的内存占用更是夸张(随便想下就知道了)。因此,可能的话应尽量少使用包装类。在JDK5.0以后,因为加入了自动类型装换,因此,Java虚拟机会在存储方面进行相应的优化。

引用类型

对象引用类型分为强引用、软引用、弱引用和虚引用。

二、 JVM调优—基本垃圾回收算法

可以从不同的的角度去划分垃圾回收算法:

按照基本回收策略分

引用计数(Reference Counting):

比较古老的回收算法。原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数。垃圾回收时,只用收集计数为0的对象。此算法最致命的是无法处理循环引用的问题。

标记-清除(Mark-Sweep):

此算法执行分两阶段。第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法需要暂停整个应用,同时,会产生内存碎片。

复制(Copying):

此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不会出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。

标记-整理(Mark-Compact):

此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。

按分区对待的方式分

增量收集(Incremental Collecting):实时垃圾回收算法,即:在应用进行的同时进行垃圾回收。不知道什么原因JDK5.0中的收集器没有使用这种算法的。

分代收集(Generational Collecting):基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年青代、年老代、持久代,对不同生命周期的对象使用不同的算法(上述方式中的一个)进行回收。现在的垃圾回收器(从J2SE1.2开始)都是使用此算法的。

按系统线程分

串行收集:串行收集使用单线程处理所有垃圾回收工作,因为无需多线程交互,实现容易,而且效率比较高。但是,其局限性也比较明显,即无法使用多处理器的优势,所以此收集适合单处理器机器。当然,此收集器也可以用在小数据量(100M左右)情况下的多处理器机器上。

并行收集:并行收集使用多线程处理垃圾回收工作,因而速度快,效率高。而且理论上CPU数目越多,越能体现出并行收集器的优势。

并发收集:相对于串行收集和并行收集而言,前面两个在进行垃圾回收工作时,需要暂停整个运行环境,而只有垃圾回收程序在运行,因此,系统在垃圾回收时会有明显的暂停,而且暂停时间会因为堆越大而越长。

三、垃圾回收面临的问题

如何区分垃圾

上面说到的“引用计数”法,通过统计控制生成对象和删除对象时的引用数来判断。垃圾回收程序收集计数为0的对象即可。但是这种方法无法解决循环引用。所以,后来实现的垃圾判断算法中,都是从程序运行的根节点出发,遍历整个对象引用,查找存活的对象。那么在这种方式的实现中,垃圾回收从哪儿开始的呢?即,从哪儿开始查找哪些对象是正在被当前系统使用的。上面分析的堆和栈的区别,其中栈是真正进行程序执行地方,所以要获取哪些对象正在被使用,则需要从Java栈开始。同时,一个栈是与一个线程对应的,因此,如果有多个线程的话,则必须对这些线程对应的所有的栈进行检查。

同时,除了栈外,还有系统运行时的寄存器等,也是存储程序运行数据的。这样,以栈或寄存器中的引用为起点,我们可以找到堆中的对象,又从这些对象找到对堆中其他对象的引用,这种引用逐步扩展,最终以null引用或者基本类型结束,这样就形成了一颗以Java栈中引用所对应的对象为根节点的一颗对象树,如果栈中有多个引用,则最终会形成多颗对象树。在这些对象树上的对象,都是当前系统运行所需要的对象,不能被垃圾回收。而其他剩余对象,则可以视为无法被引用到的对象,可以被当做垃圾进行回收。

因此,垃圾回收的起点是一些根对象(java栈, 静态变量, 寄存器...)。而最简单的Java栈就是Java程序执行的main函数。这种回收方式,也是上面提到的“标记-清除”的回收方式

如何处理碎片

由于不同Java对象存活时间是不一定的,因此,在程序运行一段时间以后,如果不进行内存整理,就会出现零散的内存碎片。碎片最直接的问题就是会导致无法分配大块的内存空间,以及程序运行效率降低。所以,在上面提到的基本垃圾回收算法中,“复制”方式和“标记-整理”方式,都可以解决碎片的问题。

如何解决同时存在的对象创建和对象回收问题

垃圾回收线程是回收内存的,而程序运行线程则是消耗(或分配)内存的,一个回收内存,一个分配内存,从这点看,两者是矛盾的。因此,在现有的垃圾回收方式中,要进行垃圾回收前,一般都需要暂停整个应用(即:暂停内存的分配),然后进行垃圾回收,回收完成后再继续应用。这种实现方式是最直接,而且最有效的解决二者矛盾的方式。

但是这种方式有一个很明显的弊端,就是当堆空间持续增大时,垃圾回收的时间也将会相应的持续增大,对应应用暂停的时间也会相应的增大。一些对相应时间要求很高的应用,比如最大暂停时间要求是几百毫秒,那么当堆空间大于几个G时,就很有可能超过这个限制,在这种情况下,垃圾回收将会成为系统运行的一个瓶颈。为解决这种矛盾,有了并发垃圾回收算法,使用这种算法,垃圾回收线程与程序运行线程同时运行。在这种方式下,解决了暂停的问题,但是因为需要在新生成对象的同时又要回收对象,算法复杂性会大大增加,系统的处理能力也会相应降低,同时,“碎片”问题将会比较难解决。

四、分代垃圾回收详述(1)

为什么要分代

分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。

在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

试想,在不进行对象存活时间区分的情况下,每次垃圾回收都是对整个堆空间进行回收,花费时间相对会长,同时,因为每次回收都需要遍历所有存活对象,但实际上,对于生命周期长的对象而言,这种遍历是没有效果的,因为可能进行了很多次遍历,但是他们依旧存在。因此,分代垃圾回收采用分治的思想,进行代的划分,把不同生命周期的对象放在不同代上,不同代上采用最适合它的垃圾回收方式进行回收。

如何分代

如图所示

虚拟机中的共划分为三个代:年轻代(Young Generation)、年老点(Old Generation)和持久代(Permanent Generation)。其中持久代主要存放的是Java类的类信息,与垃圾收集要收集的Java对象关系不大。年轻代和年老代的划分是对垃圾收集影响比较大的。

年轻代:

所有新生成的对象首先都是放在年轻代的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。

年轻代分三个区。一个Eden区,两个Survivor区(一般而言)。大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个Survivor区满时,此区的存活对象将被复制到另外一个Survivor区,当这个Survivor去也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制“年老区(Tenured)”。需要注意,Survivor的两个区是对称的,没先后关系,所以同一个区中可能同时存在从Eden复制过来 对象,和从前一个Survivor复制过来的对象,而复制到年老区的只有从第一个Survivor去过来的对象。而且,Survivor区总有一个是空的。同时,根据程序需要,Survivor区是可以配置为多个的(多于两个),这样可以增加对象在年轻代中的存在时间,减少被放到年老代的可能。

年老代:

在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

持久代:

用于存放静态文件,如今Java类、方法等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。持久代大小通过-XX:MaxPermSize=进行设置。

什么情况下触发垃圾回收

由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Scavenge GC和Full GC。

Scavenge GC

一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Scavenge GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。

Full GC

对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个对进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC:

  • 年老代(Tenured)被写满
  • 持久代(Perm)被写满
  • System.gc()被显示调用
  • 上一次GC之后Heap的各域分配策略动态变化

【编辑推荐】

  1. 聊聊JVM基础,快进来复习复习吧
  2. JVM虚拟机底层原理分析与性能优化
  3. JVM性能调优实战:让你的IntelliJ Idea纵享丝滑
  4. 如何优雅的关闭JVM?
  5. JVM 判断对象已死,实践验证GC回收
【责任编辑:武晓燕 TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

订阅专栏+更多

数据湖与数据仓库的分析实践攻略

数据湖与数据仓库的分析实践攻略

助力现代化数据管理:数据湖与数据仓库的分析实践攻略
共3章 | 创世达人

5人订阅学习

云原生架构实践

云原生架构实践

新技术引领移动互联网进入急速赛道
共3章 | KaliArch

30人订阅学习

数据中心和VPDN网络建设案例

数据中心和VPDN网络建设案例

漫画+案例
共20章 | 捷哥CCIE

213人订阅学习

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊

51CTO服务号

51CTO官微